一平面座標有四個點 (1,2) (4,3) (6,11) (7,13) 有義方城市過此4個點,球此方程式為何(不用拉格朗)?

2016-10-09 4:14 pm
更新1:

一平面座標有四個點 (1,2) (4,3) (6,11) (7,13) 有一方程式過此4個點,球此方程式為何(不用拉格朗)?

更新2:

一平面座標有四個點 (1,2) (4,3) (6,11) (7,13) 有一方程式過此4個點,求此方程式為何(不用拉格朗)?

回答 (3)

2016-10-10 2:50 am
✔ 最佳答案
Sol
加上有一3次方程式,否則解答有無限多組
f(1)=2,f(4)=3,f(6)=11,f(7)=13
f(x)=a(x-1)(x-4)(x-6)+b(x-1)(x-4)+c(x-1)+2
f(4)=c*3+2=3
c=1/3
f(x)=a(x-1)(x-4)(x-6)+b(x-1)(x-4)+(1/3)*(x-1)+2
3f(x)=3a(x-1)(x-4)(x-6)+3b(x-1)(x-4)+(x-1)+6
3f(6)=3b*5*2+5+6=3*11
30b=22
b=11/15
3f(x)=3a(x-1)(x-4)(x-6)+(33/15)*(x-1)(x-4)+(x-1)+6
45f(x)=45a(x-1)(x-4)(x-6)+33(x-1)(x-4)+15(x-1)+90
45f(7)=45a*6*3+33*6*3+15*6+90=45*13
810a+594+90+90=585
810a=-189
a=-189/810=-21/90
4050f(x)=-945(x-1)(x-4)(x-6)+2970(x-1)(x-4)+1350(x-1)+8100
=-945(x^3-11x^2+34x-24)+2970(x^2-5x+4)+1350(x-1)+8100
=(-945x^3+10395x^2-32130x+22680)+(2970x^2-14850x+11880)+(1350x-1350)+8100
=-945x^3+13365x^2-45630x+41310
f(x)=(-945/4050)x^3+(13365/4050)x^2-(45630/4050)x+41310/4050
=(-7/30)x^3+(33/10)x^2-(169/15)x+153/15
2016-10-09 7:27 pm
設三次多項方程 y = ax³ + bx² + cx + d 可通過上述四個點
故得聯立方程組★ :
y(1) = a*1³ + b*1² + c*1 + d = 2
y(4) = a*4³ + b*4² + c*4 + d = 3
y(6) = a*6³ + b*6² + c*6 + d = 11
y(7) = a*7³ + b*7² + c*7 + d = 13

令 V = [ a b c d ]^T , B = [ 2 3 11 13 ]^T , 其中 ^T 表示轉置矩陣
令 A =
[ 1³ . 1² . 1 . 1 ]
[ 4³ . 4² . 4 . 1 ]
[ 6³ . 6² . 6 . 1 ]
[ 7³ . 7² . 7 . 1 ]
則聯立方程組★可寫成如下形式 :
AV = B

雖然有很多種方法可解此矩陣方程, 但考量搭配軟體計算, 以下採用 Cramer's Rule 解 :
利用 Excel 計算相關數值, 請參考 :
http://imgur.com/a/JmEXj

由 Excel 計算得 :
Δ = det(A) = 540
Δa = - 126 , Δb = 1782 , Δc = - 6084 , Δd = 5508

a = Δa / Δ = - 126/540 = - 7/30
b = Δb / Δ = 1782/540 = 3.3
c = Δc / Δ = - 6084/540 = - 169/15
d = Δd / Δ = 5508/540 = 10.2

Ans: 三次多項方程 y = - (7/30)x³ + 3.3x² - (169/15)x + 10.2 過此四點
2016-10-09 4:30 pm
拉格朗是什麼


收錄日期: 2021-04-30 21:52:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161009081445AAhT5BS

檢視 Wayback Machine 備份