P(t) = 10^(1-t^2)?

2016-10-07 7:57 am
Find the derivative.
請問為何不能變做:
P(t) = (1-t^2) log10
= 1-t^2
P'(t) = -2t

Ans is : -4.605 t 10^(1-t^2)
更新1:

請問是一定要用natural log 嗎?thanks!!

回答 (1)

2016-10-07 8:09 am
✔ 最佳答案
因為 x ≡ e^(ln x) 不是 x ≡ ln x。
[同時,亦請小心 natural log (base e) 和 common log (base 10)。]

你的做法是無故把一個函數 take log,再強行把其認為是原函數。

以下的演譯可見犯規之處:

 P(t) = 10^(1 - t²)
 P(t) = ln[10^(1 - t²)] /!\ /!\ /!\ (foul!)
 P(t) = (1 - t²) ln10
 ...

正解(若堅持用 log):
 P(t) = 10^(1 - t²)
ln P(t) = ln 10^(1 - t²)
ln P(t) = (1 - t²) ln 10
d/dt [ln P(t)] = d/dt [(1 - t²) ln 10]
P'(t)/P(t) = -2t ln 10
P'(t) = -2t ln 10 × P(t)
P'(t) = -2t ln 10 × 10^(1 - t²)
P'(t) = -4.605 t × 10^(1 - t²)

當然可以當 differentiation rule 處理:
d/dx (a^x) = a^x ln(a)

d/dx [a^f(x)] = a^f(x) ln(a) f'(x)

P'(t)
= d/dt [10^(1 - t²)]
= 10^(1 - t²) ln(10) d/dt(1 - t²)
= 10^(1 - t²) ln(10) (-2t)
= -4.605 t × 10^(1 - t²)


收錄日期: 2021-04-23 22:02:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161006235743AAGxCvP

檢視 Wayback Machine 備份