數學Partial Functions 求詳解?

2016-10-05 4:48 am

回答 (2)

2016-10-05 6:14 am
✔ 最佳答案
Sol
(d)
設 (x^2+4x+8)/(x^3+9x^2+27x+27)=a/(x+3)+b/(x+3)^2+c/(x+3)^3
x^2+4x+8=a(x+3)^2+b(x+3)+c
Set x=-3
9-12+8=c
c=5
x^2+4x+3=a(x+3)^2+b(x+3)
x+1=a(x+3)+b
Set x=-3
-3+1=b
b=-2
a=1
So
(x^2+4x+8)/(x^3+9x^2+27x+27)=1/(x+3)-2/(x+3)^2+5/(x+3)^3
(g)
設 (x^3+9x^2+9x+15)/[(x^2+1)(x^2+4x+4)]=(ax+b)/(x+1)^2+c/(x+2)+d/(x+2)^2
x^3+9x^2+9x+15=(ax+b)*(x+2)^2+c(x^2+1)(x+2)+d(x^2+1)
Set x=-2
-8+36-18+15=d(2^2+1)
5d=25
d=5
x^3+9x^2+9x+15=(ax+b)*(x+2)^2+c(x^2+1)(x+2)+5(x^2+1)
x^3+4x^2+9x+10=(ax+b)*(x+2)^2+c(x^2+1)(x+2)
x^2+2x+5=(ax+b)(x+2)+c(x^2+1)
Set x=-2
4-4+5=c*5
c=1
x^2+2x+5=(ax+b)(x+2)+(x^2+1)
2x+4=(ax+b)(x+2)
a=0,b=2
So
(x^3+9x^2+9x+15)/[(x^2+1)(x^2+4x+4)]=2/(x+1)^2+1/(x+2)+5/(x+2)^2
2016-12-07 4:06 am
部分函数


收錄日期: 2021-04-18 15:37:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161004204839AAKnvE5

檢視 Wayback Machine 備份