✔ 最佳答案
以數學歸納法,證明對所有正整數n,下列各命題都成立。1)1^2+3^2+5^2+...+(2n-)^2=n(4n^2-1)/3
Sol
當n=1 時
左=1^2=1
右=(4*1^2-1)/3=1
So n=1時為真
設n=k時為真即
1^2+3^2+5^2+…+(2k-1)^2=k(4k^2-1)/3
Set p=k+1
1^2+3^2+5^2+…+(2k-1)^2+(2k+1)^2
=k(4k^2-1)/3+(2k+1)^2
=[4k^3-k+3(4k^2+4k+1)]/3
=(4k^3+12k^2+11k+3)/3
=[4(p-1)^3+12(p-1)^2+11(p-1)+3]/3
=[4(p^3-3p^2+3p-1)+12(p^2-2p+1)+(11p-11)+3]
=(4p^3-p]/3
=p(4p^2-1)/3
So n=k+1時為真
2)1+3+6+•••+n(n+1)/2=n(n+1)(n+2)/6
Sol
當n=1 時
左=1*2/2=1
右=1*283/6=1
So n=1時為真
設n=k時為真即
1+3+6+…+k(k+1)/2=k(k+1)(k+2)/6
Set p=k+1
1+3+6+…+k(k+1)/2+(k+1)(k+2)/2
=k(k+1)(k+2)/6+(k+1)(k+2)/2
=(p-1)p(p+1)/6+p(p+1)/2
=[p(p+1)]/6*[(p-1)+3]
=p(p+1)(p+2)/3
So n=k+1時為真