f (x )=x^2006−1 除以x^4+ x^3+ 2x^2+ x+ 1 的餘式?
回答 (1)
Sol
x^4+x^3+2x^2+x+1
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
=(x^2+x+1)(x^2+1)
設f(x)=x^2006-1=p(x)(x^2+x+1)(x^2+1)+a(x^2+x+1)(x-i)+b(x^2+x+1)
f(i)=i^2006-1=b(i^2+i+1)
-2=b(-i)
b=2i
f(x)=x^2006-1=p(x)(x^2+x+1)(x^2+1)+a(x^2+x+1)(x-i)+2i(x^2+x+1)
f(-i)=i^2006-1=a(i^2-i+1)(-2i)+2i(i^2-i+1)
-2=a(-i)*(-2i)+2i*(-i)
-2=-2a+2
a=2
2(x^2+x+1)(x-i)+2i(x^2+x+1)
=(x^2+x+1)(2x-2i+2i)
=2x(x^2+x+1)
=2x^3+2x^2+2x
收錄日期: 2021-04-30 21:55:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160925093207AAfldzd
檢視 Wayback Machine 備份