✔ 最佳答案
By EXPLICIT DIFFERENTIATION : - [ Your L.H.S. sol. ]
. . .-----------------------------------------
x³+ y³ = 1
y³ = 1-x³
y = (1-x³)^(1/3) - - - - - - - (#)
(a)
i) If y ' is expressed in terms of x :
then y ' = [(1/3)(1-x³)^(-2/3)]*(-3x²) = -x² (1-x³)^(-2/3)
ii) If y ' is to be expressed in terms of x, y :
then y ' = -x² (1-x³)^(-2/3) = -x² [(1-x³)^(1/3)]⁻² = -x² y⁻² . . . . . . . (from #)
(b)
i) If y ' is expressed in terms of x :
then y '' = -x² d/dx[(1-x³)^(-2/3)] - (1-x³)^(-2/3) d/dx(x²)
= -x² (-2/3) * (1-x³)^(-5/3) - 2x * (1-x³)^(-2/3)
= (2/3)x (1-x³)^(-5/3) [x - 3(1-x³)]
= (2/3)x (1-x³)^(-5/3) * (-3+x+3x³)
= (2x/3)(-3+x+3x³) * (1-x³)^(-5/3)
ii) If y '' is to be expressed in terms of x, y :
then y '' = (2x/3)(-3+x+3x³) * [(1-x³)^(1/3)]⁻⁵ = (2x/3)(-3+x+3x³) * y⁻⁵ . . . . . . . (from #)
_________________________________________________________________________
By IMPLICIT DIFFERENTIATION : - [ Your R.H.S. sol. ]
. . .-----------------------------------------
i) x³+ y³ = 1
d/dx (x³ + y³) = d/dx (1)
d/dx (x³) + d/dx (y³) = 0
3x² + 3y² (dy/dx) = 0
x² + y² y ' = 0 . . . . . . . . . . . [ ∵ dy/dx = y ' ]
∴ y ' = - x²/y²
但這方法是 Form 6 - U1 level,你可能未學!
ii) d/dx (y ') =d/dx(- x²/y²)
. . . . . . . . . . . . . . . . . .