✔ 最佳答案
1
Sol
x+4/(x+1)
=(x+1)+4/(x+1)-1
>=2*[(x+1)*4/(x+1)]^(1/2)-1
=2*2-1
=3
2
x^2+x+1=0
(x-1)(x^2+x+1)=0
x^3-1=0
x^3=1
(1+x^13)/x^26
=(1+x)/x^2
=(1+x)/(-x-1)
=-1
3
設x+1/x=2p<0
(x+1/x)+(x-1/x)=2+2p
x=1+p<0
p<=-1…………….
(1+p)+1/(1+p)=2p
(1+p)^2+1=2p(1+p)
p^2+2p+1+1=2p+2p^2
p^2=2
p=-√2
x=1-√2
x+1/x=-2√2
(x+1/x)^3=x^3+3x+3/x+1/x^3
-16√2=x^3+1/x^3-6√2
x^3+1/x^3=-10√2
4
0<x<1
1/x>1
1/x>1?x
1/x-x>0
x^2+1/x^2-2=(x-1/x)^2
√(x^2+1/x^2-2)=1/x-x