數學問題
xyz不等於0
3(x+y)=4(y+z)=5(z+x)
2x+y=57
求解...?
回答 (2)
3(x+y)=4(y+z)
3x+3y=4y+4z
3x-y-4z=0 i
4(y+z)=5(z+x)
4y+4z=5z+5x
-5x+4y-z=0 ii
2x+y=57 iii
x=17
y=23
z=7
Sol
3(x+y)=4(y+z)=5(z+x)=120k
x+y=40k
y+z=30k
z+x=24k
x+y+z=47k
x=17k,y=23k,z=7k
34k+23k=57
k=1
x=17,y=23,z=7
or
3(x+y)=4(y+z)=5(z+x)
(x+y)/(1/3)=(y+z)/(1/4)=(z+x)/(1/5)
(x+y)/20=(y+z)/15=(z+x)/12
(x+y)/20=(y+z)/15=(z+x)/12=[(x+y)+(y+z)+(z+z)]/[(20+15+12)
(x+y)/20=(y+z)/15=(z+x)/12=2(x+y+z)/47
(x+y)/20=(y+z)/15=(z+x)/12=(x+y+z)/23.5
(x+y)/20=(y+z)/15=(z+x)/12=(x+y+z)/23.5=x/8.5=y/11.5=z/3.5
x/8.5=y/11.5=z/3.5=2x/17=(2x+y)/28.5=57/28.5=2
x=17,y=23,z=7
收錄日期: 2021-04-18 15:30:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160903002213AAuj02V
檢視 Wayback Machine 備份