✔ 最佳答案
1.化簡下列各式:
(1)Tan(-840度)
=Tan(1080度-840度)
=Tan(240度)
=Tan(60度)
=√3
(2)Sin(16π/3)
=Sin(16π/3-4π)
=Sin(4π/3)
=-Sin(π/3)
=-√3/2
2.已知Tan25度=k,試以k表示Sin1285度
Tan25度=k>0
Sin205度=-k/√(1+k^2)<0
Sin1285度
=Sin(1285度-1080度)
=Sin205度
=-k/√(1+k^2)
3.求 Sin(2π-θ)/Cos(π/2+θ)+Tan(-θ)/Tan(π+θ)+Sec(π/2+θ)/Csc(2π+θ)之值
Sin(2π-θ)/Cos(π/2+θ)+Tan(-θ)/Tan(π+θ)+Sec(π/2+θ)/Csc(2π+θ)
=(-Sinθ)/(-Sinθ)+(-Tanθ)/Tanθ+Csc+θ/Cscθ
=1-1+1
=1
4.設0小於等於x小於2π,試求函數f(x)=Cos(2x)-3Sin x+2的最大值
0<=x<2π
f(x)=Cos(2x)-3Sin x+2
=1-2Sin^2 x-3Sinx+2
=-2Sin^2 x-3Sinx+3
=-2(Sin^2 x+3Sinx/2)+3
=-2[Sin^2 x+2*(3Sinx/4)]+3
=-2[Sin^2 x+2*(3Sinx/4)+(3/4)^2]+3+2*9/16
=-2(Sinx+3/4)^2+33/8
-1<=Sinx<=1
-1+3/4<=Sinx+3/4<=1+3/4
-1/4<=Sinx+3/4<=7/4
-1/4<=0<=7/4
(-1/4)^2=1/16,0^2=0,(7/4)^2=49/4
So
0<=(Sinx+3/4)^2<=49/16
0<=2(Sinx+3/4)^2<=49/8
-49/8<=-2(Sinx+3/4)^2<=0
-49/8+33/8<=-2(Sinx+3/4)^2+33/8<=33/8
-16/8<=f(x)<=33/8
-2<=f(x)<=33/8