積分題目:已知 y=√(〖2x〗^2+1)。若 f(x)=2 dy/dx,求 ∫2 0 f(x) dx 的值。?

2016-08-17 3:47 am
已知 y=√(〖2x〗^2+1)。若 f(x)=2 dy/dx,求 ∫2 0 f(x) dx 的值。

備註:∫上面2 下面0 f(x) dx

回答 (1)

2016-08-17 4:14 am
✔ 最佳答案
Sol
y=[(2x)^2+1]^(1/2)
y^2=4x^2+1
2ydy=8xdx
dy/dx=8x/(2y)=4x/y
f(x)=2dy/dx=8x/y=8x/[(2x)^2+1]^(1/2)
A=∫(0 to 2)_f(x)dx
=∫(0 to 2)_ 8x/[(2x)^2+1]^(1/2)dx
Set p=2x
dp=2dx
A=∫(0 to 2)_ 2*(2x)/[(2x)^2+1]^(1/2)d(2x)
=∫(0 to 1)_ 2*p/(p^2+1)^(1/2)dp
=∫(0 to 1)_ (p^2+1)^(-1/2)dp^2
=2(p^2+1)^(1/2)|(0 to 1)
=2√2-2


收錄日期: 2021-04-30 21:44:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160816194707AA1YrPr

檢視 Wayback Machine 備份