✔ 最佳答案
Hello,
cos(3A) + cos(2A) = sin[(3A)/2] + sin(A/2) (0 < A < π)
let's apply the sum-to-product formula cos α + cos β = 2cos[(α + β)/2] cos[(α - β)/2]:
2cos[(3A + 2A)/2] cos[(3A - 2A)/2] = sin[(3A)/2] + sin(A/2)
2cos[(5A)/2] cos(A/2) = sin[(3A)/2] + sin(A/2)
let's apply the sum-to-product formula sin α + sin β = 2sin[(α + β)/2] cos[(α - β)/2]:
2cos[(5A)/2] cos(A/2) = 2sin{[(3A)/2] + (A/2)} /2} cos{[(3A)/2] - (A/2)} /2}
2cos[(5A)/2] cos(A/2) = 2sin{[(4A)/2] /2} cos{[(2A)/2] /2}
2cos[(5A)/2] cos(A/2) = 2sin[(2A)/2] cos(A/2)
2cos[(5A)/2] cos(A/2) = 2sinA cos(A/2)
(moving 2sinA cos(A/2) to the left side)
2cos[(5A)/2] cos(A/2) - 2sinA cos(A/2) = 0
let's factor out 2cos(A/2):
2cos(A/2) {cos[(5A)/2] - sinA} = 0
let's apply the co-function identity sinA = cos[(π/2) - A]:
2cos(A/2) {cos[(5A)/2] - cos[(π/2) - A]} = 0
let's apply the sum-to-product formula cos α - cos β = - 2sin[(α + β)/2] sin[(α - β)/2]:
2cos(A/2) {- 2sin{ {[(5A)/2] + [(π/2) - A]} /2} sin{ {[(5A)/2] - [(π/2) - A]} /2} } = 0
2cos(A/2) {- 2sin{ {[(5A)/2] + (π/2) - A} /2} sin{ {[(5A)/2] - (π/2) + A} /2} } = 0
- 4cos(A/2) sin{ {[(5A - 2A)/2] + (π/2)} /2} sin{ {[(5A + 2A)/2] - (π/2)} /2} = 0
- 4cos(A/2) sin{ {[(3A)/2] + (π/2)} /2} sin{ {[(7A)/2] - (π/2)} /2} = 0
- 4cos(A/2) sin{[(3A)/2](1/2) + (π/2)(1/2)} sin{[(7A)/2](1/2) - (π/2)(1/2)} = 0
- 4cos(A/2) sin{[(3A)/4] + (π/4)} sin{[(7A)/4] - (π/4)} = 0
let's now equate each factor to zero to find out the solutions:
cos(A/2) = 0 → A/2 = π/2 → A = 2(π/2) = π (nonetheless the endpoint π is not included)
sin{[(3A)/4] + (π/4)} = 0 → [(3A)/4] + (π/4) = 0 → (3A)/4 = - π/4 → 3A =
- π → A = - π/3;
moreover:
[(3A)/4] + (π/4) = π → (3A)/4 = π - (π/4) → (3A)/4 = (3π)/4 → A = π (nonetheless the endpoint π is not included)
sin{[(7A)/4] - (π/4)} = 0 → [(7A)/4] - (π/4) = 0 → (7A)/4 = π/4 → 7A = π → A = π/7;
moreover:
[(7A)/4] - (π/4) = π → (7A)/4 = π + (π/4) → (7A)/4 = (5π)/4 → 7A = 5π → A = (5π)/7
[(7A)/4] - (π/4) = 2π → (7A)/4 = 2π + (π/4) → (7A)/4 = (8π + π)/4 → (7A)/4 = (9π)/4 → 7A = 9π → A = (9π)/7
in conclusion, the only solutions such that 0 < A < π are:
A = π/7
A = (5π)/7
I hope it's helpful