how to integrate 2e^1-2x with limit of ln2 and 0?

2016-08-03 6:35 am

回答 (2)

2016-08-03 7:04 am
✔ 最佳答案
Let u = e^(1-2x)
Then, du = -2 e^(1-2x) dx and dx = -1/[2 e^(1 - 2x)] du = -(1/2) (1/u) du

F(n)
= ∫2 e^(1-2x) dx
= ∫2 u [-(1/2) (1/u) du
= -∫du
= - u + C
= - e^(1-2x)

∫[0→ln2] e^(1-2x) dx
= F(ln2) - F(0)
= - e^(1-2ln2) + e^(1-0)
= e - e^(1-ln4)
= e[1 - e^(-ln4)]
2016-08-03 6:39 am
Hint: Let u = 1-2x


收錄日期: 2021-04-20 16:26:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160802223551AAwnfWy

檢視 Wayback Machine 備份