Infimum and supremum, min and max?

2016-07-28 7:03 pm
A={(e^x-x)/e^x | 0<= x <=3} please explain

回答 (1)

2016-07-28 7:58 pm
✔ 最佳答案
Note that f(x) = (e^x - x)/x is a continuous function on [0, 3], which is a closed interval. Hence, f attains its extreme values, and the maximum/supremum and minimum/infimum coincide.

Critical points:
f'(x) = (e^x * e^x - (e^x - x) * e^x)/(e^x)^2 = xe^x/e^(2x) = xe^(-x).
This equals 0 only when x = 0 (an endpoint).

Thus, the extreme values occur at the endpoints:
f(0) = 1 <---Maximum
f(3) = (e^3 - 3)/e^3 <---Minimum

I hope this helps!


收錄日期: 2021-04-21 19:25:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160728110338AAzwfbX

檢視 Wayback Machine 備份