✔ 最佳答案
You have:
L'(x) = dL/dx = k*(x+a)*(L-b)
Separate the variables:
dL/(L -b) = k*(x+a) dx
Integrate both sides:
ln(L - b) = k*((x^2)/2 + a*x) + c
where c is the combined constant of integration.
L = b + exp( k*((x^2)/2 + a*x) + c)
Note that exp( n + n) = exp(n)*exp(m), so we can write this as:
L(x) = b + C*exp(k*((x^2)/2 + a*x))
where C = exp(c) is just another way of writing the constant.