Finding the derivative of F(t)=ln(arctan(t)). Can someone please help me find the derivative of this function? Thank you in advance!?

2016-07-19 4:50 am

回答 (4)

2016-07-19 4:54 am
✔ 最佳答案
 
F(t) = ln(tan⁻¹(t))

F'(t) = 1/tan⁻¹(t) * d/dt (tan⁻¹(t))
F'(t) = 1/tan⁻¹(t) * 1/(t²+1)
F'(t) = 1 / [(t²+1) tan⁻¹(t)]
2016-07-19 4:58 am
F(t) = ln[arctan(t)]

F'(t) = d{ln[arctan(t)]}/dt
= d{ln[arctan(t)]}/d[arctan(t)] * d[arctan(t)]/dt
= [1/arctan(t)] * [1/(1+t²)]
= 1/[(1+t²) arctan(t)]
2016-07-19 7:14 am
y = ln(arctan(t))
e^y = arctan(t)
tan(e^y) = t

Derive implicitly and solve for dy/dt

e^(y) * sec(e^y)^2 * dy = dt
dy/dt = 1 / (e^(y) * sec(e^y)^2)
dy/dt = 1 / (e^(y) * (1 + tan(e^y)^2))
dy/dt = 1 / (arctan(t) * (1 + t^2))


收錄日期: 2021-04-18 15:20:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160718205046AAgqZut

檢視 Wayback Machine 備份