https://en.wikipedia.org/wiki/Circular_segment
So our first step is to figure out the angles at each circle's center that the arc subtends.
Luckily, a 5-12-13 triangle is a right triangle, so we can use some easy trig to figure it out.
sin(A) / 5 = sin(90) / 13
sin(A) = 5 * 1 / 13
sin(A) = 5/13
A = arcsin(5/13)
We want 2A as our angle
sin(B) = 12 / 13
B = arcsin(12/13)
The area of a segment is: (R^2 / 2) * (t - sin(t))
R = Radius
t = angle
Add the areas together
(12^2 / 2) * (2 * arcsin(5/13) - sin(2 * arcsin(5/13))) + (5^2 / 2) * (2 * arcsin(12/13) - sin(2 * arcsin(12/13)))
144 * (arcsin(5/13) - sin(arcsin(5/13))cos(arcsin(5/13))) + 25 * (arcsin(12/13) - sin(arcsin(12/13))cos(arcsin(12/13)))
144 * arcsin(5/13) - 144 * (5/13) * sqrt(1 - (5/13)^2) + 25 * arcsin(12/13) - 25 * (12/13) * sqrt(1 - (12/13)^2)
144 * arcsin(5/13) + 25 * arcsin(12/13) - 144 * (5/13) * (12/13) - 25 * (12/13) * (5/13)
144 * arcsin(5/13) + 25 * arcsin(12/13) - (5/13) * (12/13) * (144 + 25)
144 * arcsin(5/13) + 25 * arcsin(12/13) - 60