Calculus Antiderivative?
A particle is moving with the given data. Find the position of the particle.
a(t) = t2 − 7t + 6, s(0) = 0, s(1) = 20
回答 (1)
a(t) = t² - 7t + 6
v(t) = ∫(t² - 7t + 6) dt
v(t) = (1/3)t³ - (7/2)t² + 6t + C₁
s(t) = ∫(1/3)t³ - (7/2)t² + 6t + C₁
s(t) = (1/12)t⁴ - (7/6)t³ + 3t² + C₁t + C₂
S(0) = 0 :
(1/12)(0)⁴ - (7/6)(0)³ + 3(0)² + C₁(0) + C₂ = 0
C₂ = 0
Hence, s(t) = (1/12)t⁴ - (7/6)t³ + 3t² + C₁t
S(1) = 20
(1/12)(1)⁴ - (7/6)(1)³ + 3(1)² + C₁(1) = 20
(1/12) - (7/6) + 3 + C₁ = 20
C₁ = 20 - (1/12) + (7/6) - 3
Hence, C₁ = 217/12
The position of the particle :
s(t) = (1/12)t⁴ - (7/6)t³ + 3t² + (217/12)t
收錄日期: 2021-04-18 15:15:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160716212946AAOe9zV
檢視 Wayback Machine 備份