Math
Ans=-cot^2x+c/2?
integrate cosec^3x cos xdx=?=
回答 (2)
∫cosec³(x) cos(x) dx
= ∫cosec³(x) [cos(x) dx]
= ∫[sin(x)]⁻³ (d sinx)
= (-1/2) [sin(x)]⁻² + C₁
= (1/2) [-cosec²(x)] + (1/2)C
= [-cosec²(x) + C] / 2
Hello,
∫ csc³x cosx dx =
let's split csc³x into csc²x cscx:
∫ csc²x cscx cosx dx =
let's rewrite cscx as 1 /sinx:
∫ csc²x (1 /sinx) cosx dx =
∫ csc²x (cosx /sinx) dx =
∫ csc²x cotx dx =
∫ cotx csc²x dx =
let:
cotx = u
(differentiating both sides)
d(cotx) = du
- csc²x dx = du
csc²x dx = - du
yielding, by substitution:
∫ cotx csc²x dx = ∫ u (- du) =
- ∫ u du =
- [1/(1+1)] u¹ ⁺ ¹ + C =
- (1/2)u² + C
let's substitute back cotx for u, ending with:
- (1/2)cot²x + C
I hope it helps
收錄日期: 2021-04-18 15:14:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160711231540AAj5PUn
檢視 Wayback Machine 備份