✔ 最佳答案
1.
3x² dx - 15x dy = 0
15x dy = 3x² dx
dy = (3x² dx) / (15x)
dy = (1/5)x dx
∫dy = ∫(1/5)x dx
y = (1/5) (1/2)x² + C
y = (1/10)x² + C
====
2.
Method 1 :
Integrated by parts : ∫u dv = u v - ∫v du
∫(sinx + cosx) e^x dx
= ∫e^x [(sinx + cosx) dx]
= ∫e^x d(-cosx + sinx)
= e^x (-cosx + sinx) - ∫(-cosx + sinx) d(e^x)
= e^x (-cosx + sinx) - ∫(-cosx + sinx) e^x dx
= e^x (-cosx + sinx) - ∫e^x [(-cosx + sinx) dx]
= e^x (-cosx + sinx) - ∫e^x d(-sinx - cosx)
= e^x (-cosx + sinx) + ∫e^x d(sinx + cosx)
= e^x (-cosx + sinx) + e^x (sinx + cosx) - ∫(sinx + cosx) d(e^x)
= e^x (-cosx + sinx + sinx + cosx) - ∫(sinx + cosx) e^x dx
= 2 e^x sinx - ∫(sinx + cosx) e^x dx
Rearrange, we get :
2 ∫(sinx + cosx) e^x dx = 2 e^x sinx + C₁
Hence, ∫(sinx + cosx) e^x dx = e^x sinx + C
Method 2 :
(d/dx)(e^x sinx)
= e^x [d(sinx)/dx] + sinx [d(e^x)/dx]
= e^x cosx + e^x sinx
= (sinx + cosx) e^x
Hence, (sinx + cosx) e^x dx = d(e^x sinx)
Take integration for the both sides:
∫(sinx + cosx) e^x dx = ∫d(e^x sinx)
∫(sinx + cosx) e^x dx = e^x sinx + C