Can you help me with long division of the polynomials?

2016-07-09 2:30 am
更新1:

(1) 4x^2-18+4/x-5 (2) x^2+9x+18/x+6 (3) 7-5x^2/x-5 (4) 12a^3-6a^2-2a+7/4a+2 (5) 2x^3+2x^2-27x+6/x-3 (6) y^3+4y^2+5/y-2 Thank. GOD bless and best wishes.

回答 (2)

2016-07-09 2:34 am
Yes I can
2016-07-09 2:41 am
The steps are the same with integer long division: divide, multiply, subtract, repeat. Any remainder at the end is the numerator of a fraction with the divisor as the denominator (5 / 2 = 2 R 1 or 2 1/2)

I'll do the first one, the others follow the same pattern with different values.

. . . . ____________
x - 5 ) 4x² - 18x + 4

First step, divide: 4x² / x = 4x. Next multiply: 4x(x - 5) = 4x² - 20x. That gets written under the 4x² - 18x and then you subtract, carrying everything else over:

. . . . _4x___________
x - 5 ) 4x² - 18x + 4
. . . . . 4x² - 20x
. . . . ----------------
. . . . . . . . . . 2x + 4

Now we repeat: 2x / x = 2, 2(x - 5) = 2x - 10, then we subtract to get remainder:

. . . . _4x_+_2________
x - 5 ) 4x² - 18x + 4
. . . . . 4x² - 20x
. . . . ----------------
. . . . . . . . . . 2x + 4
. . . . . . . . . . 2x - 10
. . . . . . . . . --------------
. . . . . . . . . . . . . . 14

So the answer is:

4x + 2 + 14/(x - 5)


收錄日期: 2021-05-01 20:59:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160708183057AAQs36S

檢視 Wayback Machine 備份