Find the identical expression for: cos^4t-sin^4t/cos^2t?
回答 (2)
(cos⁴t - sin⁴t) / cos²t
= [(cos²t) - (sin²t)²] / cos²t
= (cos²t + sin²t)(cos²t - sin²t) / cos²t ...... for a² - b² = (a + b)(a - b)
= (cos²t - sin²t) / cos²t ...... for cos²t + sin²t = 1
= (cos²t / cos²t) - (sin²t / cos²t)
= 1 - (sint / cost)²
= 1 - tan²t
Hello,
(cos⁴t - sin⁴t) /cos²t =
let's factor the numerator as a difference of squares:
[(cos²t)² - (sin²t)²] /cos²t =
[(cos²t + sin²t)(cos²t - sin²t)] /cos²t =
let's apply the fundamental identity cos²t + sin²t = 1:
[(1)(cos²t - sin²t)] /cos²t =
(cos²t - sin²t) /cos²t =
(distributing and simplifying)
(cos²t /cos²t) - (sin²t /cos²t) =
1 - (sin t /cos t)² =
(being sin t /cos t = tan t)
1 - (tan t)²
then, in conclusion:
(cos⁴t - sin⁴t) /cos²t = 1 - tan²t
I hope it's helpful
收錄日期: 2021-04-18 15:14:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160705201327AAepFjN
檢視 Wayback Machine 備份