Compute the perimeter of a right-angled triangle with area 7 and hypotenuse of length 6.?

2016-07-06 3:35 am
更新1:

Is it possible?

回答 (3)

2016-07-06 3:54 am
✔ 最佳答案
Let a and b be the two sides of the triangle.

Area of the triangle :
(1/2)ab = 7
2ab = 28 ...... [1]

By Pythagorean theorem :
√(a² + b²) = 6
a² + b² = 36 ...... [2]

[1] + [2] :
a² + 2ab + b² = 64
(a + b)² = 64
a + b = 8

Perimeter
= a + b + 6
= 8 + 6
= 14
2016-07-06 3:42 am
ab/2 = 7, so ab = 2*7 = 14, so b = 14/a
a^2 + b^2 = 6^2
a^2 + (14/a)^2 = 36
a^2 + (196/(a^2)) - 36 = 0
a^4 - 36a^2 + 196 = 0
Let x = a^2, so we have:
x^2 - 36x + 196 = 0
x = (-(-36) +/- sqrt((-36)^2 - 4*1*196)) / (2*1)
x = (36 +/- sqrt(1,296 - 784)) / 2
x = (36 +/- sqrt(512)) / 2
x = 18 +/- sqrt(128)
a = sqrt(18 + sqrt(128)) and b = sqrt(18 - sqrt(128)), or vice versa.
Either way the perimeter is:
sqrt(18 + sqrt(128)) + sqrt(18 - sqrt(128)) + 6 = 14
2016-07-06 3:39 am
I'd rather not


收錄日期: 2021-05-01 21:03:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160705193527AApBsjs

檢視 Wayback Machine 備份