✔ 最佳答案
Take n ≧ 24, where n - an integer
Then n=24,25,26,...
i.e. n=24a+b, where a,b -- an integer, a≧1, b≧0
n=(5+7)2a +(5x3-7x2)b
n=5(2a+3b)+7(2a-2b)
∴ n=5p+7q, where p=2a+3b, q=2a-2b
In particular:
i) When a=b, q=2a-2b=0 => n=5p ;i.e. n is written as a sum of 5’s
ii) If n=23,
then n= 5(0)+23 = 5(1)+18 = 5(2)+13 = 5(3)+8 =5(4)+3
But none of 23,18,13, 8, 3 can be written as a multiple of 7 (i.e. 7b)
∴ 23 cannot be written as 5a+7b
Conclusion : n can be written as a sum of 5’s and/or, where n≧24
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Note :
~~~~
(a) " n written as a sum of 5’s and/or 7’s " 的意思是 : -
把 n 寫成 :
i) " a sum of 5’s and 7’s " : n = 5p +7q , where p,q - an integer , p≠0 , q≠0 ; 或
ii) " a sum of 5’s or 7’s " : n = 5p , or n = 7q
(b) 這類數並不需要什麼特別公式 , 主要是學 手法 (mathematical skill) ;
試多幾題就會「上手」!