Prove that cosX=cotX/cscC using identities?
回答 (3)
L.H.S.
= cos(x)
= [cos(x) / sin(x)] * sin(x)
= [cos(x) / sin(x)] / [1 / sin(x)]
= cot(x) / csc(x)
= R.H.S.
Then, cos(x) = cot(x) / csc(x)
RHS
cot X / csc X
= (cos X / sin X) / ( 1 / sin X)
= cos X ... QED
收錄日期: 2021-04-18 15:07:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160620142717AAx8s6Y
檢視 Wayback Machine 備份