plane geometry,plz teach me?

2016-06-17 10:07 am
only provided dec,aeb are straight lines and a and b are tangent to the circles.
Is it possible to prove
(1) adbc is a concyclic quadrilateral
(2) ac=bc?

This question is for compulsory part ,do you think the question provided insufficient information?

photo: http://s613.photobucket.com/user/Yan_Wa_Chung/media/Untitled_zpsxg7iys2x.png.html

回答 (2)

2016-06-17 11:29 am
✔ 最佳答案
                        
Question:
Provided DEC, AEB are straight lines and
A and B are tangent to the circles.
Is it possible to prove
(1) ADBC is a concyclic quadrilateral
(2) AC = BC

It is possible to prove (1) and (2) IF
D, E are the intersection points of two circles.

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Solution:
Picture:https://s31.postimg.org/e9hg160rf/1234.png
Suppose D, E are the intersection points of two circles.

(1)
∠AED = ∠DAF ...... ( ∠ in alt segment )
∠BED = ∠DBG ...... ( ∠ in alt segment )

∵ ∠AED + ∠BED = 180° ...... ( adj ∠s on st line )
∠DAF = 180° - ∠DBG

∠CBD
= 180° - ∠DBG ...... ( adj ∠s on st line )
= ∠DAF
∴ ADBC is a concyclic quadrilateral. ( ext ∠ = int opp ∠ )

(2)
∵ ADBC is a concyclic quadrilateral

∠BAC
= ∠BDC ...... ( ∠ in the same segment )
= ∠ABC ...... ( ∠ in alt segment )
∴ AC = BC ...... ( sides opp eq ∠ )

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
                                           20160617
相片:
我們發生某些問題,請再試一次。
2017-04-15 12:01 pm
Question:
Provided DEC, AEB are straight lines and
A and B are tangent to the circles.
Is it possible to prove
(1) ADBC is a concyclic quadrilateral
(2) AC = BC

It is possible to prove (1) and (2) IF
D, E are the intersection points of two circles.

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Solution:
Picture:https://s31.postimg.org/e9hg160rf/1234.png
Suppose D, E are the intersection points of two circles.

(1)
∠AED = ∠DAF ...... ( ∠ in alt segment )
∠BED = ∠DBG ...... ( ∠ in alt segment )

∵ ∠AED + ∠BED = 180° ...... ( adj ∠s on st line )
∠DAF = 180° - ∠DBG

∠CBD
= 180° - ∠DBG ...... ( adj ∠s on st line )
= ∠DAF
∴ ADBC is a concyclic quadrilateral. ( ext ∠ = int opp ∠ )

(2)
∵ ADBC is a concyclic quadrilateral

∠BAC
= ∠BDC ...... ( ∠ in the same segment )
= ∠ABC ...... ( ∠ in alt segment )
∴ AC = BC ...... ( sides opp eq ∠ )

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
                                           20160617
相片:
我們發生某些問題,請再試一次。


收錄日期: 2021-04-20 16:24:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160617020758AAJv9sr

檢視 Wayback Machine 備份