✔ 最佳答案
Question:
Provided DEC, AEB are straight lines and
A and B are tangent to the circles.
Is it possible to prove
(1) ADBC is a concyclic quadrilateral
(2) AC = BC
It is possible to prove (1) and (2) IF
D, E are the intersection points of two circles.
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Solution:
Picture:
https://s31.postimg.org/e9hg160rf/1234.png
Suppose D, E are the intersection points of two circles.
(1)
∠AED = ∠DAF ...... ( ∠ in alt segment )
∠BED = ∠DBG ...... ( ∠ in alt segment )
∵ ∠AED + ∠BED = 180° ...... ( adj ∠s on st line )
∠DAF = 180° - ∠DBG
∠CBD
= 180° - ∠DBG ...... ( adj ∠s on st line )
= ∠DAF
∴ ADBC is a concyclic quadrilateral. ( ext ∠ = int opp ∠ )
(2)
∵ ADBC is a concyclic quadrilateral
∠BAC
= ∠BDC ...... ( ∠ in the same segment )
= ∠ABC ...... ( ∠ in alt segment )
∴ AC = BC ...... ( sides opp eq ∠ )
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
20160617
相片:
我們發生某些問題,請再試一次。