✔ 最佳答案
1.
令兩根為 u , u^2
x^2 - kx - 27
= ( x - u )( x - u^2 )
= x^2 - ( u + u^2 )x + u^3
比較係數得
k = u + u^2 ..... (1式)
- 27 = u^3 ..... (2式)
由 (2式) 得 u = - 3 , 再代入(1式)得:
k = u + u^2 = - 3 + (-3)^2 = - 3 + 9 = 6
Ans: k = 6
--------------------------------------------------------------------------------
2.
令 u = x^2 + 5x , 則原式即為:
u^2 + 10u + 24 = 0
( u + 4 )( u + 6 ) = 0
u = - 4 , - 6
當 u = - 4 時:
u = x^2 + 5x = - 4
x^2 + 5x + 4 = 0
( x + 1 )( x + 4 ) = 0
x = - 1 , - 4
當 u = - 6 時:
u = x^2 + 5x = - 6
x^2 + 5x + 6 = 0
( x + 2 )( x + 3 ) = 0
x = - 2 , - 3
Ans: - 1 , - 2 , - 3 , - 4