11) Given f(x) = 2x^2 + 6x -10, find (f(x+h)-f(x))/h?

2016-06-12 8:40 pm
I know it can be difficult to understand math when typed through standard keyboard, so I am going to write it out to clear any confusion:

Given f of x equals two x squared plus six x minus ten, find (it is a fraction, the numerator is) f of (x plus h) minus f (x) ALL OVER the denominator, which is "h"

Please show all steps and press enter when you are going on to the next step so that I can follow your path.

Thanks in advance

回答 (4)

2016-06-12 8:50 pm
✔ 最佳答案
f(x+h) = 2(x+h)^2 + 6(x+h) -10
= 2x^2 + 4xh + 2h^2 + 6x + 6h - 10

f(x+h) - f(x) = 2x^2 + 4xh + 2h^2 + 6x + 6h - 10 - 2x^2 - 6x + 10 =
4xh + 2h^2 + 6h

{ f(x+h) - f(x) } /h = (4xh + 2h^2 + 6h) /h =
4x + 2h + 6

As h becomes small, this approaches 4x + 6
2016-06-12 8:47 pm
f(x) = 2x² + 6x - 10

{f(x + h) - f(x)} / h
= {[2(x + h)² + 6(x + h) - 10] - [2x² + 6x - 10]} / h
= {2x² + 4xh + 2h² + 6x + 6h - 10 - 2x² - 6x + 10} / h
= {4xh + 2h² + 6h} / h
= 4x + 2h + 6
2016-06-12 8:55 pm
( 2(x+h)^2+6(x+h)-10 -(2x^+6x-10) )/h
(2(x^2+2xh+h^2) +6x+6 -10- 2x^2-6x+10)/h
(2x^2+4xh +h^2+6x+6h -10 -2x^2-6x+10 )/h
(4xh+h^2+6h)/h=h(4x+h+6)/h=4x+6
2016-06-12 8:48 pm
given f(t) = 2 t² + 6 t - 10.....compute f(x+h) - f(x) ; then factor out an h , cancel that with the h in the denominator , take the limit....you do know how to replace t with x + h and also with t ?


收錄日期: 2021-04-18 14:58:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160612124036AAP9cJZ

檢視 Wayback Machine 備份