Please help ASAP?
Given: cos2Θ = -5/12 and Π/2 <Θ< Π (Cpsone of 2 theta equals negative five twelfths and pi over 2 is less than theta which is less than pi)
Find: cosΘ and sineΘ
回答 (3)
π/2 < θ < π
π < 2θ < 2π
cos2θ = -5/12
2θ = π + cos⁻¹(5/12)
θ = [π + cos⁻¹(5/12)] / 2
θ = 4.28
Do you know this identity?
cos(a + b) = cos(a).cos(b) - sin(a).sin(b) → suppose that: a = b = θ
cos(θ + θ) = cos(θ).cos(θ) - sin(θ).sin(θ)
cos(2θ) = cos²(θ) - sin²(θ) → given: cos(2θ) = - 5/12
cos²(θ) - sin²(θ) = - 5/12
cos²(θ) - sin²(θ) = - 5/12 → recall: cos²(x) + sin²(x) = 1 → sin²(x) = 1 - cos²(x)
cos²(θ) - [1 - cos²(θ)] = - 5/12
cos²(θ) - 1 + cos²(θ) = - 5/12
2.cos²(θ) = - (5/12) + 1
2.cos²(θ) = - (5/12) + (12/12)
2.cos²(θ) = 7/12
cos²(θ) = 7/24
cos²(θ) = [± √(7/24)]²
cos(θ) = ± √(7/24) → given: π/2 < θ < θ → cos(θ) < 0
cos(θ) = - √(7/24)
cos(θ) = - (√7)/(√24)
cos(θ) = - (√7)/(2√6)
→ cos(θ) = - (√42)/12
cos²(θ) - sin²(θ) = - 5/12 → recall: cos²(x) + sin²(x) = 1 → cos²(x) = 1 - sin²(x)
[1 - sin²(θ)] - sin²(θ) = - 5/12
1 - sin²(θ) - sin²(θ) = - 5/12
- 2.sin²(θ) = - (5/12) - 1
- 2.sin²(θ) = - (5/12) - (12/12)
- 2.sin²(θ) = - 17/12
sin²(θ) = 17/24
sin²(θ) = [± √(17/24)]²
sin(θ) = ± √(17/24) → given: π/2 < θ < θ → sin(θ) > 0
sin(θ) = √(17/24)
sin(θ) = (√17)/(√24)
sin(θ) = (√17)/(2√6)
→ sin(θ) = (√102)/12
收錄日期: 2021-04-18 14:58:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160607052632AAH2vzR
檢視 Wayback Machine 備份