Help me with math pls, it's hard?

2016-05-31 8:59 am
integral from-1 to 2 of ((x-1)/(x+2))^2 dx

回答 (1)

2016-05-31 9:18 am
✔ 最佳答案
(x - 1)/(x + 2)
= [(x + 2) - 3]/(x + 2)
= 1 - [3/(x + 2)]

[(x - 1)/(x + 2)]²
= {1 - [3/(x + 2)]}²
= 1 - 2[3/(x + 2)] + [3/(x + 2)]²
= 1 - [6/(x + 2)] + [9/(x + 2)²]

∫[(x - 1)/(x + 2)]² dx
= ∫{1 - [6/(x + 2)] + [9/(x + 2)²] dx
= ∫dx - ∫[6/(x + 2)] dx + ∫[9/(x + 2)²] dx
= ∫dx - ∫[6/(x + 2)] d(x + 2) + ∫[9/(x + 2)²] d(x + 2)
= F(x) + C
where F(x) = x - (6 ln|x + 2|) - [9/(x + 2)]

∫_(-1 to 2) [(x - 1)/(x + 2)]² dx
= F(2) - F(-1)
= {2 - (6 ln|2 + 2|) - [9/(2 + 2)]} - {-1 - (6 ln|-1 + 2|) - [9/(-1 + 2)]}
= 2 - 6 ln4 - (9/4) + 1 + 0 + 9
= (39/4) - 6 ln4


收錄日期: 2021-04-18 14:58:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160531005958AA1kZEy

檢視 Wayback Machine 備份