✔ 最佳答案
(x - 1)/(x + 2)
= [(x + 2) - 3]/(x + 2)
= 1 - [3/(x + 2)]
[(x - 1)/(x + 2)]²
= {1 - [3/(x + 2)]}²
= 1 - 2[3/(x + 2)] + [3/(x + 2)]²
= 1 - [6/(x + 2)] + [9/(x + 2)²]
∫[(x - 1)/(x + 2)]² dx
= ∫{1 - [6/(x + 2)] + [9/(x + 2)²] dx
= ∫dx - ∫[6/(x + 2)] dx + ∫[9/(x + 2)²] dx
= ∫dx - ∫[6/(x + 2)] d(x + 2) + ∫[9/(x + 2)²] d(x + 2)
= F(x) + C
where F(x) = x - (6 ln|x + 2|) - [9/(x + 2)]
∫_(-1 to 2) [(x - 1)/(x + 2)]² dx
= F(2) - F(-1)
= {2 - (6 ln|2 + 2|) - [9/(2 + 2)]} - {-1 - (6 ln|-1 + 2|) - [9/(-1 + 2)]}
= 2 - 6 ln4 - (9/4) + 1 + 0 + 9
= (39/4) - 6 ln4