✔ 最佳答案
Put u =√(1 - x)
Then, u² = 1 - x
x = 1 - u²
x² = (1 - u)²
x² = u⁴ - 2u² + 1
Also, x = 1 - u²
dx = -2u du
∫[x² / √(1 - x)] dx
= ∫[(u⁴ - 2u² + 1) / u] (-2u du)
= ∫[-2u⁴ + 4u² - 2] du
= -(2/5)u⁵ + (4/3)u³ - 2u + C
= -(2/5)[√(1 - x)]⁵ - (4/3)[√(1 - x)]³ + 2[√(1 - x)] + C
= -(2/5)[√(1 - x)]⁴√(1 - x) - (4/3)(1 - x)√(1 - x) + 2[√(1 - x)] + C
= -(2/5)(x² - 2x + 1)√(1 - x) - (4/3)(1 - x)√(1 - x) + 2√(1 - x) + C
= -(2/15)[3(x² - 2x + 1) - 10(1 - x) + 15]√(1 - x) + C
= -(2/15)(3x² - 6x + 3 - 10 + 10x + 15)√(1 - x) + C
= -(2/15)(3x² + 4x + 8)√(1 - x) + C