Is someone able to put this equation in quadratic form? 4x+5=8√(1-x^2 )?

2016-05-25 6:39 am
更新1:

With steps please

回答 (3)

2016-05-25 6:52 am
✔ 最佳答案
First, square both sides:
∴ (4x + 5)^2 = (8√(1-x^2))^2
∴ 16x^2 + 40x + 25 = 64 (1-x^2)
∴ 16x^2 +40x + 25 = 64 - 64x^2
Now rearrange to get the required quadratic equation;
∴ 80x^2 + 40x - 39 = 0
Hope this helps !!!!!!!!
2016-05-25 6:56 am
4x + 5 = 8√(1 - x² )

[4x + 5]² = [8√(1 - x² )]²

16x² + 40x + 25 = 64(1 - x²)

16x² + 40x + 25 = 64 - 64x²

80x² + 40x - 39 = 0

x = {-40 ± √[40² - 4(80)(-39)]} / [2(80)]

x = (-5 + 2√55)/20 or x = (-5 - 2√55)/20
2016-05-25 7:26 am
First square both sides getting 16x^2 + 40x + 25 = 64 - 64x^2. Then 80x^2 + 40x - 39 = 0.


收錄日期: 2021-05-01 14:46:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160524223918AA6cby8

檢視 Wayback Machine 備份