∫_ln2^ln4▒〖(e^(x+1)+1)dx〗 ∫_e^(e^4)▒〖(2x+3)/x dx〗?

2016-05-24 11:49 am
更新1:

1.∫_ln2^ln4▒〖(e^(x+1)+1)dx〗 2.∫_e^(e^4)▒〖(2x+3)/x dx〗

回答 (1)

2016-05-24 2:22 pm
✔ 最佳答案
(1)
u=x+1, du=dx
∫(e^(x+1)+1)dx =∫(e^u+1)du=e^u+u=e^(x+1)+x+1
∫_ln2^ln4 (e^(x+1)+1)dx
= [e^(x+1)+x+1]_ln2^ln4
=log(4)-log(2)+2e
=log(2)+2e

(2)
∫(2x+3)/x dx=∫(2+3/x) =2x+3log(x)
∫_e^(e^4)(2x+3)/x dx
=(2x+3)/x]_e^(e^4)
=2e^4-2e+3(log(e^4)-log(e))
=2e^4-2e+3(4-1)
=2e^4-2e+9


收錄日期: 2021-04-18 14:58:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160524034916AA5lNng

檢視 Wayback Machine 備份