ABCD為圓上4點,E為AD與BC的延長線的交點,若AD=DE,AB=AC=5,則AD=?
回答 (2)
A.....5.....B
D
....C
E
提示:
設AD = DE = x , CE = y , BC = 2z. 由 △CDE ~ △ABE 得 DE/CE = BE/AE ⇒ x/y = (y+2z)/(2x) ... ①
記BC中點為M , 由直角 △AME 得 AE² = ME² + AM² ⇒ (2x)² = (y+z)² + (5²-z²) ... ②
由 ① 得 2x² = y² + 2yz , 由 ② 得 4x² = y² + 2yz + 25 , ①代入②有 4x² = 2x² + 25 ⇒ x² = 25/2
則 AD = x = 5/√2.
△ACD ~ △AEC (since ∠ABC=∠ACB=∠CDE)
so, 5:x= 2x:5 , x=5/sqrt(2)
收錄日期: 2021-04-30 20:34:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160511094826AARqiM1
檢視 Wayback Machine 備份