高一數論
設p,q,r皆為正實數,求(8q)/(p+3q+r)-(3q+r)/(2p+q+r)-(4p)/(p+2q+r)的最大值為?
回答 (1)
Sol
p+3q+r=a
2p+q+r=b
p+2q+r=c
=>
p=a+b-2c
q=a-c
r=-3a-b+5c
3q+r=2c-b
(8q)/(p+3q+r)-(3q+r)/(2p+q+r)-(4p)/(p+2q+r)
=(8a-8c)/a-(2c-b)/b-4(a+b-2c)/c
=8a-8c/a-2c/b+1-4a/c-4b/c+8
=17-8c/a-2c/b-4a/c-4b/c
=17-(8c/a+4a/c)-(2c/b+4b/c)
<=17-2*32^(1/2)-2*8^(1/2)
=17-8*2^(1/2)-4*2^(1/2)
=17-12√2
收錄日期: 2021-04-30 21:30:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160430081406AAX3R7O
檢視 Wayback Machine 備份