How can I fully factor 4x - 5x^3 + 6?
回答 (2)
If you want to factorize the polynomial, so have to find the roots:
4x - 5x³ + 6 = 0
- 5x³ + 4x + 6 = 0 → let: x = (u + v)
- 5.(u + v)³ + 4.(u + v) + 6 = 0
- 5.[(u + v)².(u + v)] + 4.(u + v) + 6 = 0
- 5.[(u² + 2uv + v²).(u + v)] + 4.(u + v) + 6 = 0
- 5.[u³ + u²v + 2u²v + 2uv² + uv² + v³] + 4.(u + v) + 6 = 0
- 5.[u³ + v³ + 3u²v + 3uv²] + 4.(u + v) + 6 = 0
- 5.[(u³ + v³) + (3u²v + 3uv²)] + 4.(u + v) + 6 = 0
- 5.[(u³ + v³) + 3uv.(u + v)] + 4.(u + v) + 6 = 0
- 5.(u³ + v³) - 15uv.(u + v) + 4.(u + v) + 6 = 0 → you factorize (u + v)
- 5.(u³ + v³) - (u + v).(15uv - 4) + 6 = 0 → suppose that: (15uv - 4) = 0 ← equation (1)
- 5.(u³ + v³) - (u + v).(0) + 6 = 0
- 5.(u³ + v³) + 6 = 0 ← equation (2)
You can get a system of 2 equations:
(1) : (15uv - 4) = 0
(1) : 15uv = 4
(1) : uv = 4/15
(1) : u³v³ = (4/15)³
(2) : - 5.(u³ + v³) + 6 = 0
(2) : u³ + v³ = 6/5
Let: U = u³
Let: V = v³
You can get a new system of 2 equations:
(1) : UV = (4/15)³ ← this is the product P
(2) : U + V = 6/5 ← this is the sum S
You know that the values S & P are the solutions of the following equation:
x² - Sx + P = 0
x² - (6/5).x + (4/15)³ = 0
Δ = (6/5)² - [4 * (4/15)³]
Δ = (36/25) - (256/3375)
Δ = 4604/3375
Δ = (1151 * 2²)/(15 * 15²)
Δ = (1151/15) * (2/15)²
x₁ = [(6/5) + (2/15)√(1151/15)]/2 = (3/5) + (1/15)√(1151/15) ← this is U
x₂ = [(6/5) - (2/15)√(1151/15)]/2 = (3/5) - (1/15)√(1151/15) ← this is V
Recall: u³ = U → u = U^(1/3)
u = [(3/5) + (1/15)√(1151/15)]^(1/3)
u ≈ 1.05790965895423
Recall: v³ = V → v = V^(1/3)
v = [(3/5) - (1/15)√(1151/15)]^(1/3)
v ≈ 0.252069412931036
Recall: x = (u + v)
x ≈ 1.05790965895423 + 0.252069412931036
x ≈ 1,30997907188527 ← this is the unique root xo
xo ≈ 1,31 → so you can factorize (x - xo)
= - 5x³ + 4x + 6
= (x - xo).(- 5x² + ax + b) → you expand
= - 5x³ + ax² + bx + 5x².xo - ax.xo - b.xo → you group
= - 5x³ + x².(a + 5xo) + x.(b - a.xo) - b.xo → you compare to: - 5x³ + 4x + 6
- b.xo = 6 → b = - 6/xo
b - a.xo = 4 → a.xo = b - 4 → a = (b - 4)/xo
a + 5xo = 0 → a = - 5xo
Resume:
b = - 6/xo → where: xo ≈ 1,31
b = - 6/1.31
b ≈ - 4.58
a = (b - 4)/xo → where: xo ≈ 1,31
a = (b - 4)/1.31 → where: b ≈ - 4.58
a = (- 4.58 - 4)/1.31
a ≈ - 6.55
a + 5xo = 0
a = - 5xo → where: xo ≈ 1,31
a ≈ - 6.55 of course because the previous result is a ≈ - 6.55
= - 5x³ + 4x + 6
= (x - xo).(- 5x² + ax + b) → where: xo ≈ 1,31
= (x - 1.31).(- 5x² + ax + b) → where: a ≈ - 6.55
= (x - 1.31).(- 5x² - 6.55x + b) → where: b ≈ - 4.58
= (x - 1.31).(- 5x² - 6.55x - 4.58)
= - (x - 1.31).(5x² + 6.55x + 4.58) ← this is the factorization
It is a cubic with no rational roots and so does not factor.
(note: 4th and higher degree polynomials may still factor when they have no rational roots)
收錄日期: 2021-04-21 18:19:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160427060850AAggtlH
檢視 Wayback Machine 備份