Can you help me with this trig homework question?
use the function value given to determine the value of the other five trig functions of the acute angle theta. Answer in exact form. Tan theta <0 and Cos theta=5/8
回答 (2)
Since cosθ > 0 and tanθ < 0
then θ is in the 4th quadrant, and sinθ < 0
As sinθ < 0
sin²θ + cos²θ = 1
sin²θ = 1 - cos²θ
sinθ = -√(1 - cos²θ)
sinθ = -√[1 - (5/8)²]
sinθ = -√(39)/64
sinθ = -(√39)/8
tanθ = sinθ / cosθ
tanθ = [-(√39)/8] / (5/8)
tanθ = -(√39)/5
secθ = 1 / cosθ
secθ = 1 / (5/8)
secθ = 8/5
cscθ = 1 / sinθ
cscθ = 1 / [-(√39)/8]
csc = -8/(√39)
csc = -8/(√39) × [(√39)/(√39)]
csc = -8(√39)/39
cotθ = 1 / tanθ
cotθ = 1 / [-(√39)/5]
cotθ = -5/(√39)
cotθ = -5/(√39) × [(√39)/(√39)]
cotθ = -5(√39)/39
Acute angle, tan θ < 0 ??? Take it as negative acute (?)
cos θ = 5/8
sin^2 θ = 1 - cos^2 θ = 39/64
tan θ < 0, so sin θ < 0, too.
So sin θ = -√39 / 8
tan θ = sin θ / cos θ = -√39 / 5
sec θ = 1 / cos θ = 8/5
csc θ = 1 / sin θ = -8 / √39, = -8 √39 / 39
cot θ = 1 / tam θ = -5 / √39, = -5 √39 / 39
收錄日期: 2021-04-18 14:46:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160426233549AA96X8l
檢視 Wayback Machine 備份