xy=35,yz=41,zx=15,solve xyz?
回答 (3)
xy = 35 ...... [1]
yz = 41 ...... [2]
zx = 15 ...... [3]
[1]*[2]*[3] :
(xyz)² = 35 × 41 × 15
xyz = ±√(35 × 41 × 15)
xyz = ±5√861
Thus, xyz = 5√861 or xyz = -5√861
xy = 35
y = 35/x
yz = 41
z = 41/y → recall: y = 35/x
z = 41/(35/x)
z = 41x/35
zx = 15
x = 15/z → recall: z = 41x/35
x = 15/(41x/35)
x = 525/(41x)
x² = 525/41
x² = 25 * (21/41)
x = ± 5√(21/41)
First case: x = 5√(21/41)
Recall: y = 35/x = 35/[5√(21/41)] = 7/√(21/41)
Recall: z = 41x/35 = [41 * 5√(21/41)]/35 = 41.√(21/41)/7
= xyz
= [5√(21/41)] * [7/√(21/41)] * [41.√(21/41)/7]
= [5] * [7] * [41.√(21/41)/7]
= 205.√(21/41)
Second case: x = - 5√(21/41)
Recall: y = 35/x = 35/- [5√(21/41)] = - 7/√(21/41)
Recall: z = 41x/35 = [41 * - 5√(21/41)]/35 = - 41.√(21/41)/7
= xyz
= [- 5√(21/41)] * [- 7/√(21/41)] * [- 41.√(21/41)/7]
= - [5] * [7] * [41.√(21/41)/7]
= - 205.√(21/41)
→ xyz = ± 205.√(21/41)
收錄日期: 2021-04-30 17:59:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160425221155AADA8OJ
檢視 Wayback Machine 備份