resolva 〖sen〗^4x+〖cos〗^4 x=3/4?
回答 (2)
sin(x)^4 + cos(x)^4 = 3/4
(sin(x)^2)^2 + cos(x)^4 = 3/4 ... write 4th power as square of a square
(1 - cos(x)^2)^2 + cos(x)^4 = 3/4 ... substitute for sin^2
1 - 2cos(x)^2 + cos(x)^4 + cos(x)^4 = 3/4 ... eliminate parentheses
1 - 2cos(x)^2(1 - cos(x)^2) = 3/4 ... factor cosine terms
1 - 2cos(x)^2·sin(x)^2 = 3/4 ... substitute for cos^2
1 - sin(2x)^2/2 = 3/4 ... substitue 2sin(x)cos(x) = sin(2x)
(1 + 1 - sin(2x)^2)/2 = 3/4 ... rewrite to common denominator
(1 + cos(2x)^2)/2 = 3/4 ... substitute for sin^2
(1 + (1 + cos(4x))/2)/2 = 3/4 ... substitute for cos^2, double angle formula
(3/4) + cos(4x)/4 = 3/4 ... simplify
cos(4x) = 0 ... subtract 3/4, multiply by 4
Solutions are x = (2n+1)π/8 for any integer n.
收錄日期: 2021-04-23 20:45:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160420065801AAT2t96
檢視 Wayback Machine 備份