Logarithms 10pts best explanation?

2016-03-30 2:06 am
10^-x = 5^2x we have to do change of base formula, but what do we change the base to & why ?

回答 (3)

2016-03-30 2:14 am
10^(-x) = 5^(2x)

log[10^(-x)] = log[5^(2x)]

-x log(10) = 2x log(5)

-x = 2x log(5)

2x log(5) + x = 0

x [2 log(5) + 1] = 0

x = 0
2016-03-30 2:10 am
10^(-x) = 5^(2x)

Let's get the log of both sides:

ln[10^(-x)] = ln[5^(2x)]

Now move the exponents out of the logs:

-x ln(10) = 2x ln(5)

Move both terms to the same side so we can factor out the x:

0 = 2x ln(5) + x ln(10)
0 = x[2 ln(5) + ln(10)]

Divide both sides by the constant (2 ln(5) + ln(10)):

x = 0
2016-03-30 2:09 am
5^(2x)=10^-x
25^x = 1/10^x
(10^x)(25^x) = 1
(10*25)^x=1
250^x = 1
---> x=0


收錄日期: 2021-04-18 14:40:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160329180620AARd226

檢視 Wayback Machine 備份