Use the Limit Comparison Test to show that ∞Σ(n=1) (n+1)/(n+2)^3 converges, and that ∞Σ(n=1) (n+1)/(n+2)^2 diverges.?
回答 (1)
0 < (n + 1)/(n + 2)³ < (n + 1)/(n + 1)³ = 1/(n + 1)²
0 < Σ(n = 1,∞) 1/(n + 1)² < Σ(n = 1,∞) 1/(n + 1)²
∵ Σ(n = 1,∞) 1/(n + 1)² converges ...... by the integral test
∴ Σ(n = 1,∞) 1/(n + 1)² converges
(n + 1)/n² < (n + 1)/(n + 2)² < (n + 1)/(n + 1)² = 1/(n + 1)
Σ(n = 1,∞) (1/n + 1/n²) < Σ(n = 1,∞) (n + 1)/(n + 2)² < Σ(n = 1,∞) 1/(n + 1)
∵ Σ(n = 1,∞) (1/n + 1/n²) and Σ(n = 1,∞) 1/(n + 1) diverge ...... by the integral test
∴ Σ(n = 1,∞) (n + 1)/(n + 2)² diverges
收錄日期: 2021-04-30 20:11:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160327214754AAuZBAG
檢視 Wayback Machine 備份