Let x be a real number. Find the minimum value of
root(x^2-4x+13)+root(x^2-14x+130).?
回答 (2)
✔ 最佳答案
Sol
x^2-4x+13=(x-2)^2+3^2
x^2-14x+130=(x-7)^2+9^2
題目改為
求兩點(2,3),(7,9)過x軸最短距離
(2,3)在x軸對稱點(2,-3)
(7-2)^2+(9+3)^2
=25+144
=169
最小值=13
y=root(x^2-4x+13)+root(x^2-14x+130)
dy/dx=0.5(2x-4)(x^2-4x+13)^(-0.5) +0.5(2x-14)(x^2-14x+130)^(-0.5)
dy/dx=(x-2)(x^2-4x+13)^(-0.5) +(x-7)(x^2-14x+130)^(-0.5)
dy/dx|x=0 =-2(13)^(-0.5)-7(130)^(-0.5)
最小值=16.51780446
收錄日期: 2021-04-18 14:47:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160319064037AAthOmb
檢視 Wayback Machine 備份