✔ 最佳答案
令 z = x + y , 則 dz = dx + dy
(x+y) dy / dx = 1
(x+y) dy = dx
z ( dz - dx ) = dx
z dz = ( z + 1 ) dx
[ z / (z+1) ] dz = dx
令 u = z + 1 , 則 du = dz
[ ( u - 1 ) / u ] du = dx
[ 1 - 1/u ] du = dx
積分得:
x = u - ln|u|+ c1
x = z+1 - ln|z+1|+ c1
x = x+y+1 - ln|x+y+1|+ c1
y - ln|x+y+1|= -1 - c1 ≡ c
Ans: y - ln|x+y+1|= c
-----------------------------------------------------------
驗算:
(1)
當 x+y+1 ≧ 0 , 答案式即為:
y - ln ( x+y+1 ) = c
兩邊對 x 微分得:
y ' - ( 1+ y' )/(x+y+1) = 0
(x+y+1)y' = 1 + y'
(x+y)y' = 1 即 (x+y)dy/dx = 1
(2)
當 x+y+1 < 0 , 答案式即為:
y - ln [ - ( x+y+1 ) ] = c
兩邊對 x 微分得:
y ' - [ - ( 1+ y' )]/[ - (x+y+1) ] = 0
y ' - ( 1+ y' )/(x+y+1) = 0
(x+y+1)y' = 1 + y'
(x+y)y' = 1 即 (x+y)dy/dx = 1
故驗算無誤