how does (-1/144)cot(asin(x/12)) become (((-(x^2)/144)+1)^0.5)/(-12x) ???
with steps plz, thxxxxxxx?
回答 (1)
Sol
[(-x^2/144)+1]^0.5/(-12x)
=12*[(-x^2/144)+1]^0.5/[12*(-12x)]
=[144*(-x^2/144)+1]^0.5/(-144x)
=(-1/144)*(-x^2+144)^0.5/x
=-√(144-x^2)/x
Set w=ArcSin(x/12)
Sinw=x/12
(1) x>=0
w在第一象限
Cotw=√(144-x^2)/x>0
(-1/144)Cot[ArcSin(x/12)]
=(-1/144)Cot(w)
=(-1/144)*√(144-x^2)/x
(2) x<0
w在第四象限
Cotw=√(144-x^2)/x<0
(-1/144)Cot[ArcSin(x/12)]
=(-1/144)Cot(w)
=(-1/144)*√(144-x^2)/x
收錄日期: 2021-04-30 20:34:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160313214905AAilSPp
檢視 Wayback Machine 備份