Consider the function f(x) for which f(0)=7 and f'(0)=7. Find h'(0) for th function h(x)= 1/f(x). h'(0)= please explain?

2016-02-29 6:02 pm

回答 (4)

2016-02-29 6:46 pm
✔ 最佳答案
since f'(x)=7, if we assume that this is a line 7=m then:

y=7x+b, and since (0,7), b=7 then:

y=7x+7 making

h(x)=1/f(x) become:

h(x)=1/(7x+7)

dh/dx=-7/(7x+7)^2 and when x=0

dh/dx=-1/7
2016-02-29 6:27 pm
Please read :
2016-02-29 6:12 pm
h(x) = 1/f(x)

Or for brevity:
h = 1/f

dh/df = -1/f²

dh/dx = (dh/df)(df/dx) (chain rule)
. . .. . .= (-1/f²)df/dx

Writing h'(x) for dh/dx, f'(x) for df/dx and f(x) for f gives:
h'(x) = (-1/f(x)²)f'(x)

For x=0
h'(0) = (-1/f(0)²)f'(0)
. . . . = (-1/7²)7
. . . . = -1/7
2016-02-29 6:54 pm
Add your answer
參考: What's your Source (optional)


收錄日期: 2021-04-18 14:33:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160229100201AAtEWMJ

檢視 Wayback Machine 備份