simplify sin(pi/6 +x)+sin(pi/6 -x)?

2016-02-26 4:32 pm

回答 (6)

2016-02-26 5:04 pm
✔ 最佳答案
sin(pi/6 +x)+sin(pi/6 -x)

sin(pi/6) cos x+cos (pi/6) sin(x) + sin(pi/6) cos x - cos(pi/6) sin x

2 sin (pi/6) cos x

2 sin (30) cos x

2 (1/2) cons x

cos x
2016-02-26 4:39 pm
Identities :
sin(A ± B) = sinA cosB ± cos A sinB

sin[(π/6) + x] + sin[(π/6) - x]
= [sin(π/6) cosx + cos(π/6) sinx] + [sin(π/6) cosx - cos(π/6) sinx]
= sin(π/6) cosx + cos(π/6) sinx + sin(π/6) cosx - cos(π/6) sinx
= 2 sin(π/6) cosx
= 2 × (1/2) × cosx
= cosx
2016-02-26 4:35 pm
Well,

sin(pi/6 +x) + sin(pi/6 -x) = sin(pi/6) cosx + cos(pi/6) sinx + sin(pi/6) cos(-x) - cos(pi/6) sinx
= sin(pi/6) cosx + cos(pi/6) sinx + sin(pi/6) cos(x) - cos(pi/6) sinx <--- because : cos(-x) = cosx
= 2 sin(pi/6) cosx
= 2 * 1/2 * cosx
= cosx

sin(pi/6 +x) + sin(pi/6 -x) = cosx

qed

hope it' ll help !!
2016-02-26 4:34 pm
sin(pi/6 +x) is the same thing as cos(pi/6). so cos pi /6 + -cos pi/6 so 0
2016-02-27 5:10 pm
sin(pi/6 +x)+sin(pi/6 -x)=[sin(pi/6)cosx+sinxcos(pi/6)]+[sin(pi/6)cosx-sinxcos(pi/6)] = 2sin(pi/6)cosx =
cosx.
2016-02-26 4:42 pm
Do you know this identity?

sin(a + b) = sin(a).cos(b) + cos(a).sin(b) → suppose that: a = (π/6) and b = x

sin[(π/6) + x] = sin(π/6).cos(x) + cos(π/6).sin(x) ← memorize this result as (1)


Do you know this identity?

sin(a - b) = sin(a).cos(b) - cos(a).sin(b) → suppose that: a = (π/6) and b = x

sin[(π/6) - x] = sin(π/6).cos(x) - cos(π/6).sin(x) ← memorize this result as (2)



= sin[(π/6) + x] + sin[(π/6) - x] → recall (1)

= sin(π/6).cos(x) + cos(π/6).sin(x) + sin[(π/6) - x] → recall (2)

= sin(π/6).cos(x) + cos(π/6).sin(x) + sin(π/6).cos(x) - cos(π/6).sin(x)

= 2.sin(π/6).cos(x) → you know that: sin(π/6) = 1/2

= 2.(1/2).cos(x)

= cos(x)


收錄日期: 2021-04-18 14:33:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160226083241AAcMJ3r

檢視 Wayback Machine 備份