Basic probability question?

2016-02-24 6:57 am

回答 (1)

2016-02-24 7:35 am
✔ 最佳答案
(a)
V : occupant of an SUV
V' : not occupant of an SUV
B : wearing a seat belt
B' : not wearing a seat belt

P(V) = 45% = 0.45
P(V') = 1 - 0.45 = 0.55
P(S') = 44% = 0.44
P(S) = 1 = 0.44 =0.56

P(S'|V) = 82%
P(V and S') / P(V) = 0.82
P(V and S') / 0.45 = 0.82
P(V and S') = 0.369

P(occupant of an SUV and not wearing a seat belt)
= P(V and S')
= 0.369


(b)
P(occupant of an SUV or not warning a seat belt)
= P(V or S')
= P(V) + P(S') - P(V and S')
= 0.45 + 0.44 - 0.369
= 0.521


(c)
P(wearing a seat belt or not an occupant of SUV)
= P(S or V')
= 1 - P(V and S')
= 1 - 0.369
= 0.631


(d)
P(S'|V) = 0.82

P(S|V) = 1 - 0.82 = 0.18
P(S and V) / P(V) = 0.18
P(S and V) / 0.45 = 0.18
P(S and V) = 0.081

The required probability
= P(V|S)
= P(S and V) / P(S)
= 0.081 / 0.56
= 0.1446


(e)
P(V and S') = 0.396
P(V) × P(S') = 0.45 × 0.44 = 0.198

Since P(V and S') ≠ P(V) × P(S'),
then the two events are DEPENDENT.


收錄日期: 2021-04-18 14:30:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160223225751AAlGfL6

檢視 Wayback Machine 備份