✔ 最佳答案
∫ sin^2(x)cos^5(x)dx , recall that cos^2(x) = 1 - sin^2(x), so we can write the integrand as follows,
= ∫ sin^2(x)((1-sin^2(x))^2)cos(x)dx
= ∫ sin^2(x)cos(x)(1 - 2sin^2(x) + sin^4(x))dx , now
= ∫ sin^2(x)cos(x)dx - 2 ∫ sin^4(x)cos(x)dx + ∫ sin^6(x)cos(x)dx ,well we now have sine functions and its derivative , if you cannot see directly, use substitution
let sin(x) = u and cos(x)dx = du , right ? so we have
= ∫ (u^2)du - 2 ∫ (u^4)du + ∫ (u^6)du , so
= (u^3)/3 - 2((u^5)/5) + (u^7)/7 + c , now use back substitution to have the result in terms of "x" ,
= sin^3(x)/3 - 2sin^5(x)/5 + sin^7(x)/7 + c