roots of [x² - 2(a - 1)x - (b + 2)² = 0] are equal. a⁹⁹⁹ + b³ =?

2016-02-11 11:00 am

回答 (2)

2016-02-11 11:10 am
✔ 最佳答案
The equation x² - 2(a - 1)x - (b + 2)² = 0 has equal roots.

Discriminant, Δ = 0
[-2(a - 1)]² - 4[-(b + 2)]² = 0
4(a - 1)² + 4(b + 2)² = 0
(a - 1)² + (b + 2)² = 0

Since (a - 1)² ≥ 0 and (b + 2)² ≥ 0,
(a - 1)² = 0 and (b + 2)² = 0
a - 1 = 0 and b + 2 = 0
a = 1 and b = -2

a⁹⁹⁹ + b³
= 1⁹⁹⁹ + (-2)³
= 1 - 8
= -7
2016-02-11 1:34 pm
If roots of x^2 -2(a-1)x - (b+2)^2 =0 are equal, then the discriminant 4(a-1)^2
+ 4(b+2)^2 = 0, ie., (a-1)^2 + (b+2)^2 = 0, ie., (a,b) = (1,-2) & a^999 + b^3 =
1^999 + (-2)^3 = 1 -8 = -7.


收錄日期: 2021-04-18 14:35:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160211030048AAlTLKv

檢視 Wayback Machine 備份