If the line x+ky=10 is tangent to the curve x^2 +y^2=10, find the possible values of k.?

2016-02-07 11:14 am

回答 (4)

2016-02-07 11:44 am
✔ 最佳答案
Substituting x = 10 – ky into x^2 +y^2 – 10 = 0
(k^2 + 1)y^2 – 20ky + 90 = 0
Perfect square if 400k^2 = 360(k^2 + 1)
k = 3 or k = -3
2016-10-02 6:53 pm
Linex Of Ky
2016-02-07 4:22 pm
i) The line y = mx + c will be a tangent to the circle, if and only if its distance from the centre of the circle is equal to the radius of the circle.

ii) Applying this, the distance of the line x + ky - 10 = 0 from the centre (0, 0) is:
|(-10)/√((1² + k²)| = √10

Squaring, 100/(1 + k²) = 10
Solving k = ±3
2016-02-07 11:21 am
ky = -x + 10
y = (-1/k) * x + 10

So it has a slope of (-1/k)

x^2 + y^2 = 10
2x * dx + 2y * dy = 0
y * dy = -x * dx
dy/dx = -x/y
dy/dx = -(10 - ky) / y

-1/k = -(10 - ky) / y
1/k = (10 - ky) / y
y = k * (10 - ky)
y = 10k - k^2 * y
y + y * k^2 = 10k
y * (1 + k^2) = 10k
y = 10k / (1 + k^2)

x + ky = 10
x + k * 10k / (1 + k^2) = 10
x + 10k^2 / (1 + k^2) = 10
x = 10 - 10k^2 / (1 + k^2)
x = (10 + 10k^2 - 10k^2) / (1 + k^2)
x = 10 / (1 + k^2)

y = 10k / (1 + k^2)
x = 10 / (1 + k^2)

x^2 + y^2 = 10
100 / (1 + k^2)^2 + 100k^2 / (1 + k^2)^2 = 10
(100 / (1 + k^2)^2) * (1 + k^2) = 10
100 / (1 + k^2) = 10
10 / (1 + k^2) = 1
10 = 1 + k^2
9 = k^2
-3 , 3 = k


收錄日期: 2021-05-01 16:14:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160207031450AACWSSH

檢視 Wayback Machine 備份