✔ 最佳答案
Sol
m=101
A=(99^3+100^3)/(1^3+100^3)+(97^3+99^3)/(2^3+99^3)+(95^3+98^3)/(3^3+98^3)
+...+(1^3+51^3)/(50^3+51^3)
=(99^3+100^3)/(1^3+100^3)+(97^3+99^3)/(2^3+99^3)+(95^3+98^3)/(3^3+98^3)+...
+(1^3+51^3)/(50^3+51^3)
=Σ(k=1 to 50)_{[(101-2k)^3+(101-k)^3]/[k^3+(101-k)^3]}
=Σ(k=1 to 50)_{[(m-2k)^3+(m-k)^3]/[k^3+(m-k)^3]}
(m-2k)^3+(m-k)^3
=(m^3-3*m^2*2k+3*m*4k^2-8k^3)+(m^3-3m^2k+3mk^2-k^3)
=2m^3-9m^2k+15mk^2-9k^3
=(2m-3k)(m^2-3mk+3k^2)
k^3+(m-k)^3=m^3-3m^2k+3mk^2=m(m^2-3mk+k^2)
A=Σ(k=1 to 50)_{[(m-2k)^3+(m-k)^3]/[k^3+(m-k)^3]}
=Σ(k=1 to 50)_(2m-3k)/m
=100-(3/m)*Σ(k=1 to 50)_k
=100-(3/101)*50*51/2
=6275/101